Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
+2(0, y) -> y
+2(s1(x), 0) -> s1(x)
+2(s1(x), s1(y)) -> s1(+2(s1(x), +2(y, 0)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
+2(0, y) -> y
+2(s1(x), 0) -> s1(x)
+2(s1(x), s1(y)) -> s1(+2(s1(x), +2(y, 0)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
+2(0, y) -> y
+2(s1(x), 0) -> s1(x)
+2(s1(x), s1(y)) -> s1(+2(s1(x), +2(y, 0)))
The set Q consists of the following terms:
+2(0, x0)
+2(s1(x0), 0)
+2(s1(x0), s1(x1))
Q DP problem:
The TRS P consists of the following rules:
+12(s1(x), s1(y)) -> +12(y, 0)
+12(s1(x), s1(y)) -> +12(s1(x), +2(y, 0))
The TRS R consists of the following rules:
+2(0, y) -> y
+2(s1(x), 0) -> s1(x)
+2(s1(x), s1(y)) -> s1(+2(s1(x), +2(y, 0)))
The set Q consists of the following terms:
+2(0, x0)
+2(s1(x0), 0)
+2(s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
+12(s1(x), s1(y)) -> +12(y, 0)
+12(s1(x), s1(y)) -> +12(s1(x), +2(y, 0))
The TRS R consists of the following rules:
+2(0, y) -> y
+2(s1(x), 0) -> s1(x)
+2(s1(x), s1(y)) -> s1(+2(s1(x), +2(y, 0)))
The set Q consists of the following terms:
+2(0, x0)
+2(s1(x0), 0)
+2(s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
+12(s1(x), s1(y)) -> +12(s1(x), +2(y, 0))
The TRS R consists of the following rules:
+2(0, y) -> y
+2(s1(x), 0) -> s1(x)
+2(s1(x), s1(y)) -> s1(+2(s1(x), +2(y, 0)))
The set Q consists of the following terms:
+2(0, x0)
+2(s1(x0), 0)
+2(s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
+12(s1(x), s1(y)) -> +12(s1(x), +2(y, 0))
Used argument filtering: +12(x1, x2) = x2
s1(x1) = s1(x1)
+2(x1, x2) = +2(x1, x2)
0 = 0
Used ordering: Quasi Precedence:
s_1 > +_2
s_1 > 0
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
+2(0, y) -> y
+2(s1(x), 0) -> s1(x)
+2(s1(x), s1(y)) -> s1(+2(s1(x), +2(y, 0)))
The set Q consists of the following terms:
+2(0, x0)
+2(s1(x0), 0)
+2(s1(x0), s1(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.